Ứng dụng

Khái niệm Big Data (dữ liệu lớn)

(KHCN)-Big Data (dữ liệu lớn) là thuật ngữ dùng để chỉ một tập hợp dữ liệu rất lớn và phức tạp đến nỗi những công cụ, ứng dụng xử lý dữ liệu truyền thống không thể đảm đương được.

Dữ liệu lớn yêu cầu một tập các kỹ thuật và công nghệ được tích hợp theo hình thức mới để khai phá từ tập dữ liệu đa dạng, phức tạp, và có quy mô lớn.

Ngày nay, dữ liệu chính là tiền bạc của doanh nghiệp. Lấy ví dụ, những thông tin về thói quen, sở thích của khách hàng có được từ lượng dữ liệu khổng lồ các doanh nghiệp thu thập trong lúc khách hàng ghé thăm và tương tác với trang web của mình. Chỉ cần doanh nghiệp biết khai thác hiệu quả, Big Data là công cụ không chỉ giúp tăng lợi nhuận cho chính họ mà còn giúp tiết kiệm thời gian cho khách hàng trong mua sắm.

Ảnh minh họa (st)
Big Data không chỉ ứng dụng trong kinh doanh mà còn có khả năng tác động đến hầu hết ngành nghề khác. Chính phủ các nước có thể ứng dụng Big Data để dự đoán tỷ lệ thất nghiệp, xu hướng nghề nghiệp của tương lai để đầu tư cho những hạng mục phù hợp hoặc cắt giảm chi tiêu, kích thích tăng trưởng kinh tế, thậm chí dự đoán sự phát triển của mầm bệnh và khoanh vùng sự lây lan của bệnh dịch. Nói cách khác, Big Data sẽ là công cụ thúc đẩy sự phát triển kinh tế - xã hội trong tương lai.

Trong báo cáo nghiên cứu năm 2001 và những diễn giả liên quan, META Group (bây giờ là Gartner) nhà phân tích Doug Laney định nghĩa những thách thức và cơ hội tăng dữ liệu như là 3 chiều, tăng giá trị dữ liệu, tốc độ vào ra của dữ liệu (velocity), và khổ giới hạn của kiểu dữ liệu (variety). Gartner, và nhiều ngành công nghiệp tiếp tục sử dụng mô hình '3Vs' để mô tả dữ liệu lớn. Trong năm 2012, Gartner đã cập nhật định nghĩa như sau: "Dữ liệu lớn là khối lượng lớn, tốc độ cao và/hoặc loại hình thông tin rất đa dạng mà yêu cầu phương thức xử lý mới để cho phép tăng cường ra quyết định, khám phá bên trong và xử lý tối ưu". Định nghĩa '3Vs' của Gartner vẫn được sử dụng rộng rãi, và trong phù hợp với định nghĩa đồng thuận.là: "Dữ liệu lớn tiêu biểu cho tập thông tin mà đặc điểm như khối lượng lớn (Volume), tốc độ cao(Velocity) và đa dạng (Variety) để yêu cầu phương thức phân tích và công nghệ riêng biệt để biến nó thành có giá trị". Thêm nữa, vài tổ chức đã thêm vào tính xác thực(Veracity) để mô tả về nó. 3Vs đã được mở rộng để bổ sung đặc tính của dữ liệu lớn.

Big Data được mô tả bởi những đặc trưng sau:

Volume (Dung lượng)

Số lượng dữ liệu được tạo ra và lưu trữ. Kích thước của dữ liệu xác định giá trị và tiềm năng insight- và liệu nó có thể thực sự được coi là dữ liệu lớn hay không.

Variety (Tính đa dạng)

Các dạng và kiểu của dữ liệu. Dữ liệu được thu thập từ nhiều nguồn khác nhau và các kiểu dữ liệu cũng có rất nhiều cấu trúc khác nhau.

Velocity (Vận tốc)

Trong trường hợp này nghĩa là tốc độ các dữ liệu được tạo ra và xử lý để đáp ứng các nhu cầu và thách thức trên con đường tăng trưởng và phát triển.

Veracity (Tính xác thực)

Chất lượng của dữ liệu thu được có thể khác nhau rất nhiều, ảnh hưởng đến sự phân tích chính xác.

Với hơn 30 triệu người dùng Internet và hơn 15 triệu người dùng Internet trên điện thoại di động, Việt Nam đang là đích ngắm của nhiều nhà cung cấp giải pháp Big Data như Microsoft, IBM, Oracle… Big Data và các công nghệ phân tích có khả năng làm thay đổi hoàn toàn bộ mặt của các ngành kinh tế và nghề nghiệp. Vì vậy, những mô hình kinh doanh mới dựa trên Big Data đang được hình thành để giúp các tổ chức, doanh nghiệp tận dụng dữ liệu. “Đây cũng là xu thế tất yếu trong tương lai không xa với doanh nghiệp Việt Nam".

TH

Thông tin website

Chuyên trang Bản tin khoa học công nghệ.
Thực hiện : Phòng Khoa học - Công nghệ, Trung Tâm CNTT, BộVăn hoá,Thể thao & Du lịch.
Người chịu trách nhiệm chính: Nguyễn Thanh Liêm - Giám đốc.

Địa chỉ: Ngõ 2 số 20, Vân Hồ, Hoa Lư, Hà Nội;
Tel: 0243 9745845
Email: khoahoccongnghe@cinet.gov.vn
Ghi rõ nguồn khi phát lại thông tin từ website này.

Liên hệ Tòa soạn